Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

نویسندگان

  • Jianfa Wu
  • Dahao Peng
  • Zhuping Li
  • Li Zhao
  • Huanzhang Ling
چکیده

To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

متن کامل

An Improved Artificial Immune System-Based Network Intrusion Detection by Using Rough Set

With the increasing worldwide network attacks, intrusion detection (ID) has become a popular research topic in last decade. Several artificial intelligence techniques such as neural networks and fuzzy logic have been applied in ID. The results are varied. The intrusion detection accuracy is the main focus for intrusion detection systems (IDS). Most research activities in the area aiming to impr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015